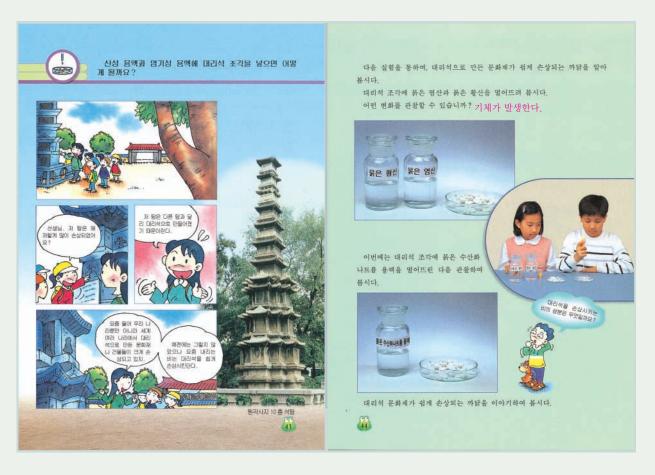


대리석으로 만든 문화재나 건물이 손상되는 까닭


차시	2/5 차시		
교과서	43~44쪽	실험 관찰	35쪽

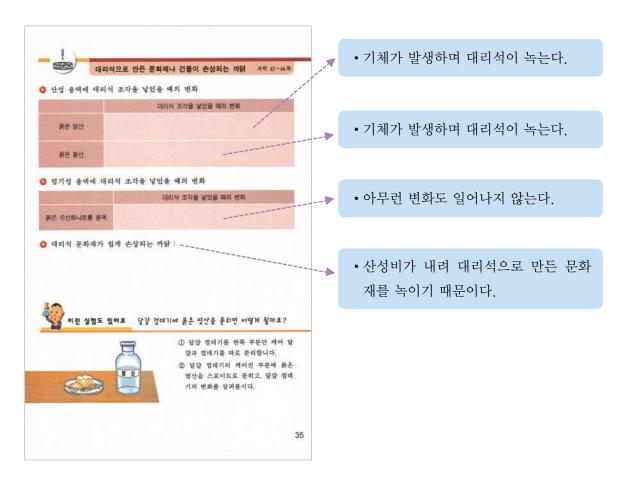
학습 목표

개념 영역 ●대리석 조각에 산성 용액과 염기성 용액을 떨어뜨렸을 때의 변화를 말할 수 있다.

과정 영역 ● 대리석으로 만든 문화재가 손상되는 이유를 산의 성질과 관련지어 추리할 수 있다.

학습 개요

- 1. 대리석 조각에 산성 용액을 떨어뜨렸을 때의 반응 알아보기
- 대리석 조각에 묽은 염산과 묽은 황산을 떨어뜨리면 반응 하여 기체와 열이 발생한다.


- 2. 대리석 조각에 염기성용액을 떨어뜨렸을 때의 반응 알아보기
- 대리석 조각에 묽은 수산화나트륨 용액을 떨어뜨리면 반응하지 않는다.

- 3. 대리석으로 만든 문화 재나 건물이 손상되는 이유 추리하기
- 산성비 때문에 대리석으로 만든 문화재나 건물이 손상되었다는 것을 안다.

실험 관찰

모둠별 준비물

묽은 염산 (Hydrochloric acid;HCl (1M)

묽은 황산 (Sulfuric acid; H₂SO₄) (1M)

묽은 수산화나트륨용액 (Sodium Hydroxide ;NaOH) (1M)

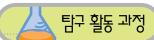
스포이트(3개/모둠)

대리석 조각

핀셋(1개/모둠)

페트리 접시(3개/모둠)

보안경(1개/학생)


이런 실험도 있어요./준비물

모둠별 준비물

묽은 염산(1M), 스포이트(1개/모둠), 페트리 접시(1개/모둠), 달걀 껍데기(조금/모둠)

학생 준비물

보안경(1개/학생)

활동 1. 대리석과 산성 용액의 반응

1. 페트리 접시 3개에 대리석 조각을 2~3 개씩 각각 넣는다 핀셋을 사용하여 대리석 조 각을 페트리 접시에 넣는다.

대리석 조각을 물에 씻어 말 린 후 사용하는 것이 좋다.

۸I

2. 대리석 조각에 묽은 염산을 스포이트로 3~5방울 떨어뜨린다.

사용했던 스포이트는 물이들어 있는 비커에 넣도록 한다.

간혹 페트리 접시의 바닥에 대리석 가루가 떨어져 바닥에 서도 반응하는 경우가 있다.

3. 묽은 염산을 떨어뜨린 대리석 조각의 변화를 관찰한다.

4. 대리석 조각에 묽은 황산을 스포이트로 3~5방울 떨어뜨린다.

이때 생기는 기체는 이산화 탄소이나 학생들에게 언급 할 필요는 없다. 묽은 염산을 넣었던 스포이 트를 사용하면 안 된다. 다 른 스포이트를 사용하도록 한다.

5. 묽은 황산을 떨어뜨린 대리석 조각의 변화를 관찰한다.

활동 2. 대리석과 염기성 용액의 반응

1. 대리석 조각에 묽은 수산화나트륨 용액을 스포이트로 3~5방울 떨어뜨린다.

2. 묽은 수산화나트륨 용액을 떨어뜨린 대 리석 조각의 변화를 관찰한다.

묽은 수산화나트륨 용액을 떨어뜨린 대리석 조각에는 아무런 변화도 일어나지 않 는다.

3. 대리석으로 만든 문화재가 손상되는 이 유에 대하여 위의 실험 결과와 관련지어 추리한다.

이런 실험도 있어요. 달걀 껍데기에 묽은 염산 을 묻히면 어떻게 될까요?

1. 달걀 껍데기를 페트리 접시에 넣는다.

2. 달걀 껍데기를 잘게 부수어 묽은 염산 을 스포이트로 3~5방울 떨어뜨린 후 달 걀 껍데기의 변화를 관찰한다.

달걀 껍질에도 대리석과 같은 물질 (탄산칼슘)이 들어 있으므로, 이때 발 생되는 기체는 대리석과 묽은 염산이 반응했을 때 발생되는 기체와 같다. 따라서 대리석 대신 달걀 껍데기를 이용할 수 있다.

정리

1. 대리석 조각에 산성 용액을 떨어뜨렸을 때의 변화: 기체가 발생하며 대리석이 녹는다.

 $\mathbf{2}$. 대리석 조각에 염기성 용액을 떨어뜨렸을 때의 변화: 아무런 변화도 일어나지 않는다.

3. 대리석으로 만든 문화재가 손상되는 이유: 산성을 띠고 있는 빗물이 대리석을 녹이기 때문 이다.

- 1. 다음 중 대리석에 떨어뜨렸을 때 기체가 생기는 물질을 모두 고르세요.
- ① 알코올

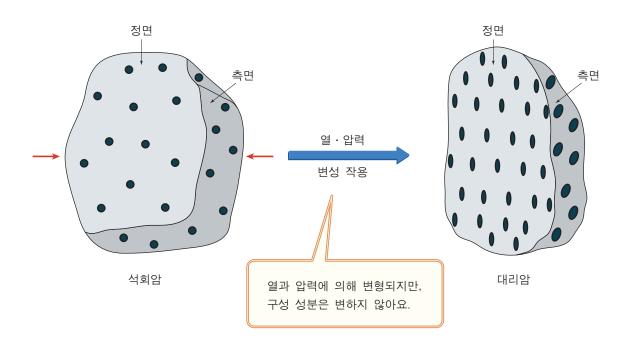
② 묽은 염산

③ 묽은 황산

④ 묽은 수산화나트륨 용액

)

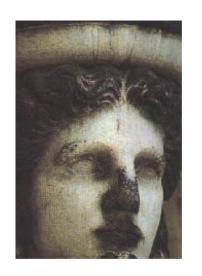
2. 대리석으로 만든 문화재가 손상되는 이유를 써 보세요. (


정답 1. ②, ③

2. 산성을 띠고 있는 빗물이 대리석을 녹이기 때문이다. 혹은 산성비가 내려서 대리석으로 만든 문화재를 녹이기 때문이다.

1. 대리암과 석회암의 차이점과 공통점

석회암은 동식물의 잔해나 바닷물 속의 성분이 침전되었다가 오랜 시간 굳어져 생성되는 퇴적암으로 탄산칼슘(CaCO₃)이 주성분이다. 이 석회암이 주변에 뜨거운 마그마 또는 지각 작용으로 생기는 열과 압력의 영향을 받을 경우, 대리암으로 변한다. 이처럼 높은 열이나 압 력이 작용하여 암석이 가진 본래의 성질이나 조직이 달라지는 작용을 변성 작용이라고 한다. 변성 작용이 일어나도 암석의 구성 성분은 변하지 않으므로 석회암과 대리암의 주성분은 모 두 탄산칼슘이다.


흔히 대리석, 석회석이라는 용어를 대리암, 석회암과 혼용한다. 그러나, 광물과 암석의 차 이를 확실히 구별할 필요가 있을 때에는 보통 광물은 '석'으로, 암석은 '암'으로 표현한다. 여기서는 광물과 구분하여 대리암이나 석회암으로 표현하는 것이 바람직하다.

2. 대리암 조각이 손상되는 이유

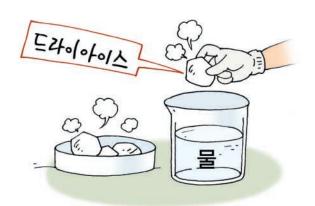
대리암은 변성 과정을 거쳐 석회암에 비해 더 치밀하고 단단 하게 되지만 대리암으로 만들어진 건축물이나 조각 작품들은 오랜 세월을 거치면서 서서히 손상된다. 대리암이 손상되는 이 유는 주성분인 탄산칼슘이 산과 쉽게 반응하는 성질을 가지고 있기 때문이다. 탄산칼슘과 산의 반응은 다음과 같다.

탄산칼슘 + 산 → 염 + 이산화탄소 + 물

산성비는 이러한 반응을 촉진시켜 대리석 조각의 손상을 빠르게 진행시킨다.

3. 대리암이 염기와는 반응하지 않는 이유

대리암에 묽은 수산화나트륨 용액을 떨어뜨렸을 때 왜 변화가 없는 것일까? 대리암의 구성 성분인 탄산칼슘은 칼슘 이온(Ca^{2+})과 탄산 이온(CO_3^{2-})으로 구성된 염으로, 물에 조금녹으며 그 수용액은 염기성을 띤다. 탄산칼슘 스스로 염기성을 띠기 때문에 산과는 반응을 잘하지만, 염기와는 잘 반응하지 않는다.


탄산칼슘(CaCO₃)과 같은 금속염은 물과 반응하여 수소 이온(H⁺)이나 수산화 이온(OH⁻)을 만들어냄으로써, 수용액이 산성이나 염기성을 띠게 된다. 탄산칼슘은 물에 잘 녹지 않는 편이나, 물에 녹았을 때에는 상대적으로 수산화 이온(OH⁻)을 많이 내는 성질을 가지고 있다. 따라서, 물과의 반응 결과 탄산칼슘 수용액은 염기성을 띠게 된다.

반 번 이름

드라이아이스로 알아보는 석회 동굴의 생성 원리

준비물: 250 mL 비커, 돋보기, 면장갑, 석회암 조각, 드라이아이스, 식초, pH시험지

1. 면장갑을 끼고 드라이아이스를 물이 든 비커 속에 넣어 탄산수를 만든다.

2. pH시험지를 이용하여 탄산수가 산성인 지 염기성인지 확인한다.

3. 탄산수가 든 비커에 석회암 조각을 넣어 표면에 어떤 변화가 있는지 관찰 한다.

4. 10분이 지난 후 석회암 조각의 크기에 어떤 변화가 있는지 관 찰한다.

석회암 조각을 탄산수에 넣었을 때 관찰한 내용	석회암 조각의 크기 변화(탄산수)

5. 탄산수가 석회암에 변화를 일으킬 수 있는 이유가 무엇인지 생각해 보자.

6. 대기 중에서 쉽게 만들어질 수 있는 탄산수에 석회암이 노출되었을 때 어떤 일이 일어나게 될지 석회 동굴이 만들어지는 과정과 연관지어 예상해 보자.

실험 결과 석회암에 탄산수 또는 식초를 떨어뜨렸을 때 발생하는 기포를 관찰할 수 있다. 이때 염산을 이용하면, 확실히 표면의 변화를 관찰할 수 있다. 진한 염산을 사용하더라도 염산이 든 비커에 석회암 조각을 넣는다면 석회암 조각이 완전히 용해되는 것을 안전하게 관찰할 수 있다. 산성 물질에 의해 석회암 표면이 용해되는 것을 관찰하는 활동을 통해서 탄산수와의 반응에 의해 석회 동굴이 생성되는 현상을 이해할 수 있다.

1. 콘크리트에 생기는 고드름

콘크리트의 주원료는 석회석이다. 석회석의 주성분인 탄산칼슘이 대기의 수분과 이산화탄 소에 의해 녹아내리면서 콘크리트 고드름이 만들어진다. 마치 석회 동굴에서 볼 수 있는 고 드름 모양의 종유석과 유사한데, 이산화탄소가 날아가고 물이 증발하면서 조금씩 자라난다. 강염기성이던 콘크리트가 산성 대기에 오래 노출되면서 중성 또는 산성화되면서 나타나는 현상이다.

2. 대리암 건축물을 보호하기 위한 노력

국보 제2호 원각사지 10층 석탑은 조선 시 대 조성된 대리암 석탑으로 그 우수성이 인 축물로. 오랜 세월 노출된 외부 대리암 건축 정되고 있다. 이 탑은 현재 대기 중 산성 성 분이나 조류 배설물에 의한 부식 방지를 위 한 방안으로, 유리 구조물에 싸여 보호되고 있다.

타지마할 사원은 인도의 대표적 이슬람 건 재가 손상되고 있다. 보존 대책으로 표면에 실리콘을 도포하는 보수 작업과 인근 공장들 의 화석 연료 사용을 제한하는 정책을 펴고 있다.

대리석 조각상에 영향을 미치는 요인

공장 굴뚝 매연

우리가 사용하는 대부분의 화석 연료에는 불순물로서 황이 포함되어 있으며 연소 과정을 거치면서 황산화물(SO_X)이 만들어진다. 황산화물은 오랜 기간 대기 중에 머물면서 산소나 수증기와 작용하여 황산 (H_2SO_4)을 생성한다. 이렇게 만들어진 황산은 산에 약한 탄산칼슘에는 치명적인 물질로 탄산칼슘을 녹인다. 따라서 건축 자재나 조각 작품의 재료로 쓰인 대리석에 손상을 일으키게 된다.

자동차 배기 가스

질소 산화물(NO_x)은 대부분 석탄, 석유 등 화석 연료의 연소 과정에 의해 발생한다. 이들이 대기 중의 수증기와 적절히 반응하여 질산(HNO_3)을 만들게 된다. 이 과정을 통해 생성된 질산 역시 탄산칼슘과 접촉하면 황산과 마찬가지로 탄산칼슘을 녹인다. 질소 산화물 역시 건축 자재나 조각 작품의 재료로 쓰인 대리석에는 치명적일 수밖에 없다.

조류의 배설물

조류 배설물에 있는 유기산과 질소 노폐물이 대리석 조각에 달라붙어 직접적인 부식을 일으킬 수 있으며, 미생물이 배설물을 분해하면서 생성한 유기산 등에 의해 대리석 손상이 일어날 수 있다.

산성비를 중화시키는 황사

반 번 이름

환경 오염에 대한 나의 의견 말하기

다음의 인물 역할극을 조별로 수행해보고. 각 인물들의 대화 내용을 참고하여 화석 연료의 사용에 대한 자신의 의견을 써 보자.

